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Entropy of the Rindler Horizon

Li Xiang 2 and Zhao Zhengd

The entropy of the Rindler horizon to a nonuniformly accelerating observer is investi-
gated. It is shown that result proportional to the area relies on a time-dependent cutoff,
and the local energy determined by the cutoff is closer to the Planck scale than the
brick-wall model. The method and result obtained in this paper can well be applied to
the nonstationary black hole.

The line element (Misnest al,, 1973)
ds? = —(1 + ax)?dt? + dx® + dy? + dZ (1)

describes a uniformly accelerating Rindler observer in Minkowski space—time,
where the acceleratioa is a constant. Although an inertial observer is in the
Minkowski vacuum state, it is shown that the Rindler observer is in a thermal
bath and receives thermal radiation from the horizon locatedl 8y—1/a. It is
interesting that an equation similar to (1) is still a solution of Einstein’s equation
whena is time-dependent (Tang, 1988)= a(t). According to our understanding

of it, the line element (Tang, 1989)

ds® = —[1 + a(t)x]?dt® + dx® + dy? + dZ 2)

describes an observer with a variable acceleration. The horizon is located by (Zhao
and Luo, 1992)

1 }
£=—-2(-¥) ®

whereé = d&/dt. The Hawking—Unruh effect has also been investigated and it
has been shown that the temperature is proportional to the variable acceleration
(Zhao and Luo, 1992)
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This shows that on a large scale the Rindler space with an inconstant acceleration
is not in thermodynamic equilibrium because the temperature is time-dependent.
However, as a two-dimensional system, the horizon is in equilibrium because
of the plane symmetry. The method to study the Hawking—Unruh radiation of
the Rindler horizon with inconstant acceleration is based on the Damour—Ruffini
scheme (Damour and Ruffini, 1976). The essential point of this scheme is that the
equations of the quantum fields near the horizon asymptotically approach the form
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or other equivalent form [see Eq. (7)], whargis the tortoise coordinate. The
in-coming and out-going waves can be obtained. The out-going solution is not
analytical at the horizon. However, it can be extended to the interior of the horizon.
Following Damour and Ruffini, the spectral distribution is given by the interior
production of the wave functions.

In the Rindler space—time with inconstant acceleration, the generalized tor-
toise coordinates are defined as

v =t-—tydv=dt,
o= x4 5 Inlx — (0] ®)
K

wherex = k(tp) is a parameter which is treated as a constant under the above
coordinate transformations. We demand that the equation of quantum field near
the horizon be asymptotically deduced to the following equation
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Thus, bothe andé are determinedk = a(t), & is just the location of the horizon
shown by Eq. (3), which is consistent with the null condition. By using Damour
and Ruffini scheme, it is shown that the parametappears in the spectrum and
is proportional to the radiation temperatufe= a(t)/2x.

The similar method can extensively and successfully be applied to the non-
static black holes. The relevant works are in Zhao and Dai (1992), Yang and Zhao
(1993), and Liet al. (1998).

It is interesting to compute the entropy of the horizon in the nonuniformly
accelerating Rindler space—time. The following is devoted to this problem.

Comparing Eqg. (2) with (3), one can see that the infinite red-shift surface does
not coincide with the horizon. We expect that there exists a frame where the two
surfaces are identical. We introduce the following coordinate transformation

X, = X — &, dx, = dx — &dt, (8)
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then Eq. (2) can be reduced to
ds? = —[(1 + ax)? — 7] dt? + dxZ + 2 dtdx, + dy? + dZ. )

The physical meaning of the coordinate transformation is easily understood. In
order to cancel the effect caused by the variability of the horizon, we must choose
a frame co-moving with the horizon. In Rindler system, an observer co-moving
with the event horizon is described by, = 0. A surface just outside the horizon

is fixed atx, = ¢, € is asmall quantity ande = 0 is required. Thus the geometry

of this surface is determined by

ds? = —[(1 + ax)? — £°]dt? + dy? + dZ, (10)
and

; 1
V== v=Gn=1/(L+ax? -, ¢g°= ®, gl=g?=1  (11)

Substituting (11) into the following equation of massless scalar field

\/%_ga,t (vV—99"0,®) =0, (12)

we obtain

%0 1 2 9
— 0td — 0D+ /— — 4+ —(® =0, 13
2(—goo)¥2 V=000 ' * goo[ay2 t oz (13)

where gy, = d;goo. The first term will be vanishing in the case of the uniform
accelerationgg, = 0. The corresponding solution reads

b = f(e) efia)tJriS(e)vLi (ykerZkz)- (14)
In the case of inconstant acceleration, generally, the solution can be supposed as
= F(t, €) dVhtzk), (15)

€ is the small parametede = 0, as mentioned in the previous part. It is useful

to know the asymptotic behavior of equation near the horizon because we only
investigate the field in the vicinity of the horizon. It is shown in Zhao and Luo
(1992)

F(t,e) ~ e et (16)

ase — 0, whichis atrivial solution of Eq. (7). It means that Eq. (14) can be treated
as the zeroth approximation of solution of Eq. (12). In general, if we suppose

b ~ f(t, 6) e—iwt+iS(5)+i(yky+Zkz), (17)
in the vicinity of the horizon. Substituting (17) into (13), we have

—%at f+ goo[ 02 — w?f] — g (k2 + k&) f = 0. (18)
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We notice
&f — 0, (19)

asgoo — 0. This mean$ asymptotically approaches a constant. It is an evidence
for Eq. (16). Substituting (14) into (13), we obtain

w?

k2=k2+k?= — = E2 (20)
YO —goo
It is the momentum—energy relation for an instare = w/./—0oo is the locally
defined energy. For a finite part of the Rindler horizon with akethe number of
guantum states in the momentum rankyek(+ dk) reads

27 Akdk
NK) = ———— 21
dNK) = =57 (21)
or in the energy range, E + dE)
AEdE
dN(E) = —d (22)
2
The logarithm of the partition function is defined as
A [ E2d(BE)
- _ _e BBy
InzZ = /dN(E)In(l e rF) y oE 1
00 2
__A / pdpzcﬁm, (23)
47pB2 Jo eP—1 2mp?

whereg = T~1,/=goo, p = BE, and the zeta function(3) = 1.202. The entropy
reads

S:InZ—ﬂaan _ 3§(3)A=—3§(3)AT2, (24)

ap 27Tﬁ2 27 goo

whereggo(€) ~ €. Obviously, entropy becomes infinite wherapproaches zero.
However, the nonzero cutoff is necessary if the locally defined erergfymode
is not allowed to exceed the Planck scale. According to Wien's displacement law,
the maximum of energy density of black body radiation is at the specific mode
with frequencywmax = 2.822T . The local energy near the horizon is given by (in
the static case)

Wmax 2.822
Emax = = T. 25
e ~—%0  +/—%00 (25)

Therefore, the squar€nyax appears in (24)

_ 3(3)Efax
S= 2 x (2.8227 A (26)
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The fine computation shows that entropy will be reduced to the standard
Bekenstein—Hawking formula, Eya.x = 1.86 (Planck energy).

The nonzero cutoff is reasonable. According to the general concepts of the
guantum field theory in curved space—time, there exists an observable minimal
length: the length less than Planck length is not observable. In other words, the
modes with energy higher than Planck energy is nonobjective. In our understand-
ing, those modes with energy higher than Planck scale have no contribution to the
entropy observed by a Rindler observer. There exists a similar case, Pauli—Villars
regularization of quantum field theory (Demettsal, 1995). In that scheme, An
assistant field with infinite mass is introduced. However, according to uncertainty
principle, the field is nonobjective and doesn't produce any physical effect.

The reason why we investigate the entropy of the Rindler horizon is stimulated
by the geometric character of black hole entropy. We recall the equation of the state
of thermal radiation in flat space—time, where entropy is an extensive quantity and
is proportional to the volume. However, this is only valid for three-dimensional
system. The entropy will be proportional to the area if a two-dimensional system
is investigated. Even in brick-wall model ('t Hooft, 1985) and entanglement inter-
pretation (Bombelliet al,, 1986; Frolov and Novikov, 1993; Srednicki, 1993), it
is shown that the main contribution to the entropy of the black hole is attributed to
the modes in close vicinity of the horizon. Therefore, the geometry of near horizon
region merits consideration. It is well known that the geometry closely near the
horizon of a static hole is Rindler-like

ds® = —X%dt? + d X + r2dQ2. (27)
We introduce the following transformations
X=E+x,t=;ct’, (28)
K
Egs. (27) becomes
ds® = —(1 + «x)?dt? + dx® + r3dQ?, (29)

wherex is the surface gravity at the static horizon. In the infinitesimal vicinity of a
point at the horizon, the metric of plane can substitute for the geometry of spherical
surface. Then, Egs. (1), point by point, describes the geometry of an infinitesimal
vicinity to the horizon. The entropy of the black hole can be obtained by Rindler
approximation (Frolov and Fursaev, 1998; Li and Zhao, 2000a).

Most authors focus their attention on the stationary black holes. However,
considering the Hawking radiation of holes, the more real space—time is nonsta-
tionary. It is meaningful and interesting to compute the entropy of nonstationary
black hole. By using the condition of linear nonequilibrium, we have investigated
the entropy of Vaidya black hole (Li and Zhao, 2000b). We believe that the result
obtained in this paper can also be applied to the nonstationary case. Although the
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surface gravity is not well-defined in a nonstationary space—time, we still know
by intuition that an observer near the horizon feels a variable acceleration. This
is very similar to the case of nonuniformly accelerating observer in Minkowski
space-time.
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