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Entropy of the Rindler Horizon

Li Xiang 1,2 and Zhao Zheng1

The entropy of the Rindler horizon to a nonuniformly accelerating observer is investi-
gated. It is shown that result proportional to the area relies on a time-dependent cutoff,
and the local energy determined by the cutoff is closer to the Planck scale than the
brick-wall model. The method and result obtained in this paper can well be applied to
the nonstationary black hole.

The line element (Misneret al., 1973)

ds2 = −(1+ ax)2dt2+ dx2+ dy2+ dz2 (1)

describes a uniformly accelerating Rindler observer in Minkowski space–time,
where the accelerationa is a constant. Although an inertial observer is in the
Minkowski vacuum state, it is shown that the Rindler observer is in a thermal
bath and receives thermal radiation from the horizon located byξ = −1/a. It is
interesting that an equation similar to (1) is still a solution of Einstein’s equation
whena is time-dependent (Tang, 1989),a = a(t). According to our understanding
of it, the line element (Tang, 1989)

ds2 = −[1+ a(t)x]2dt2+ dx2+ dy2+ dz2 (2)

describes an observer with a variable acceleration. The horizon is located by (Zhao
and Luo, 1992)

ξ = −1

a
(1− ξ̇ ), (3)

whereξ̇ = dξ/dt. The Hawking–Unruh effect has also been investigated and it
has been shown that the temperature is proportional to the variable acceleration
(Zhao and Luo, 1992)

T(t) = a(t)

2π
. (4)
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This shows that on a large scale the Rindler space with an inconstant acceleration
is not in thermodynamic equilibrium because the temperature is time-dependent.
However, as a two-dimensional system, the horizon is in equilibrium because
of the plane symmetry. The method to study the Hawking–Unruh radiation of
the Rindler horizon with inconstant acceleration is based on the Damour–Ruffini
scheme (Damour and Ruffini, 1976). The essential point of this scheme is that the
equations of the quantum fields near the horizon asymptotically approach the form

∂28

∂r 2∗
− ∂

28

∂t2
= 0, (5)

or other equivalent form [see Eq. (7)], wherer∗ is the tortoise coordinate. The
in-coming and out-going waves can be obtained. The out-going solution is not
analytical at the horizon. However, it can be extended to the interior of the horizon.
Following Damour and Ruffini, the spectral distribution is given by the interior
production of the wave functions.

In the Rindler space–time with inconstant acceleration, the generalized tor-
toise coordinates are defined as

v = t − t0, dv = dt,

r∗ = x + 1

2κ
ln[x − ξ (t)], (6)

whereκ = κ(t0) is a parameter which is treated as a constant under the above
coordinate transformations. We demand that the equation of quantum field near
the horizon be asymptotically deduced to the following equation

∂28

∂r 2∗
+ 2

∂28

∂v∂r∗
= 0. (7)

Thus, bothκ andξ are determined:κ = a(t), ξ is just the location of the horizon
shown by Eq. (3), which is consistent with the null condition. By using Damour
and Ruffini scheme, it is shown that the parameterκ appears in the spectrum and
is proportional to the radiation temperature,T = a(t)/2π .

The similar method can extensively and successfully be applied to the non-
static black holes. The relevant works are in Zhao and Dai (1992), Yang and Zhao
(1993), and Liet al. (1998).

It is interesting to compute the entropy of the horizon in the nonuniformly
accelerating Rindler space–time. The following is devoted to this problem.

Comparing Eq. (2) with (3), one can see that the infinite red-shift surface does
not coincide with the horizon. We expect that there exists a frame where the two
surfaces are identical. We introduce the following coordinate transformation

x∗ = x − ξ, dx∗ = dx− ξ̇dt, (8)
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then Eq. (2) can be reduced to

ds2 = −[(1+ ax)2− ξ̇2
] dt2+ dx2

∗ + 2ξ̇ dtdx∗ + dy2+ dz2. (9)

The physical meaning of the coordinate transformation is easily understood. In
order to cancel the effect caused by the variability of the horizon, we must choose
a frame co-moving with the horizon. In Rindler system, an observer co-moving
with the event horizon is described bydx∗ = 0. A surface just outside the horizon
is fixed atx∗ = ε, ε is a small quantity anddε = 0 is required. Thus the geometry
of this surface is determined by

ds2
3 = −[(1+ ax)2− ξ̇2

]dt2+ dy2+ dz2, (10)

and
√−g = √−g00 =

√
(1+ ax)2− ξ̇2

, g00 = 1

g00
, g11 = g22 = 1. (11)

Substituting (11) into the following equation of massless scalar field

1√−g
∂µ
(√−ggµν∂ν8

) = 0, (12)

we obtain

− g′00

2(−g00)3/2
∂t8− 1√−g00

∂2
t 8+

√−g00

[
∂2

∂y2
+ ∂2

∂z2

]
8 = 0, (13)

whereg′00 = ∂t g00. The first term will be vanishing in the case of the uniform
acceleration,g′00 = 0. The corresponding solution reads

8 = f (ε) e−iωt+i S(ε)+i (yky+zkz). (14)

In the case of inconstant acceleration, generally, the solution can be supposed as

8 = F(t, ε) ei (yky+zkz), (15)

ε is the small parameter,dε = 0, as mentioned in the previous part. It is useful
to know the asymptotic behavior of equation near the horizon because we only
investigate the field in the vicinity of the horizon. It is shown in Zhao and Luo
(1992)

F(t, ε) ∼ e−iωt , (16)

asε → 0, which is a trivial solution of Eq. (7). It means that Eq. (14) can be treated
as the zeroth approximation of solution of Eq. (12). In general, if we suppose

8 ∼ f (t, ε) e−iωt+i S(ε)+i (yky+zkz), (17)

in the vicinity of the horizon. Substituting (17) into (13), we have

−g.00

2
∂t f + g00

[
∂2

t f − ω2 f
]− g2

00

(
k2

y + k2
z

)
f = 0. (18)
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We notice

∂t f → 0, (19)

asg00→ 0. This meansf asymptotically approaches a constant. It is an evidence
for Eq. (16). Substituting (14) into (13), we obtain

k2 = k2
y + k2

z =
ω2

−g00
= E2. (20)

It is the momentum–energy relation for an instantt . E = ω/√−g00 is the locally
defined energy. For a finite part of the Rindler horizon with areaA, the number of
quantum states in the momentum range (k, k+ dk) reads

dN(k) = 2πAkdk

(2π )2
, (21)

or in the energy range (E, E + dE)

dN(E) = AEd E

2π
. (22)

The logarithm of the partition function is defined as

ln Z = −
∫

dN(E) ln(1− e−βE) = A

4π

∫
E2d(βE)

eβE − 1

= A

4πβ2

∫ ∞
0

p2dp

ep − 1
= ζ (3)A

2πβ2
, (23)

whereβ = T−1√−g00, p = βE, and the zeta functionζ (3)= 1.202. The entropy
reads

S= ln Z − β ∂ ln Z

∂β
= 3ζ (3)A

2πβ2
= −3ζ (3)A

2πg00
T2, (24)

whereg00(ε) ∼ ε. Obviously, entropy becomes infinite whenε approaches zero.
However, the nonzero cutoff is necessary if the locally defined energyE of mode
is not allowed to exceed the Planck scale. According to Wien’s displacement law,
the maximum of energy density of black body radiation is at the specific mode
with frequencyωmax= 2.822T . The local energy near the horizon is given by (in
the static case)

Emax= ωmax√−g00
= 2.822√−g00

T. (25)

Therefore, the squareEmax appears in (24)

S= 3ζ (3)E2
max

2π × (2.822)2
A. (26)
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The fine computation shows that entropy will be reduced to the standard
Bekenstein–Hawking formula, ifEmax= 1.86 (Planck energy).

The nonzero cutoff is reasonable. According to the general concepts of the
quantum field theory in curved space–time, there exists an observable minimal
length: the length less than Planck length is not observable. In other words, the
modes with energy higher than Planck energy is nonobjective. In our understand-
ing, those modes with energy higher than Planck scale have no contribution to the
entropy observed by a Rindler observer. There exists a similar case, Pauli–Villars
regularization of quantum field theory (Demerset al., 1995). In that scheme, An
assistant field with infinite mass is introduced. However, according to uncertainty
principle, the field is nonobjective and doesn’t produce any physical effect.

The reason why we investigate the entropy of the Rindler horizon is stimulated
by the geometric character of black hole entropy. We recall the equation of the state
of thermal radiation in flat space–time, where entropy is an extensive quantity and
is proportional to the volume. However, this is only valid for three-dimensional
system. The entropy will be proportional to the area if a two-dimensional system
is investigated. Even in brick-wall model (’t Hooft, 1985) and entanglement inter-
pretation (Bombelliet al., 1986; Frolov and Novikov, 1993; Srednicki, 1993), it
is shown that the main contribution to the entropy of the black hole is attributed to
the modes in close vicinity of the horizon. Therefore, the geometry of near horizon
region merits consideration. It is well known that the geometry closely near the
horizon of a static hole is Rindler-like

ds2 = −X2dt2+ d X2+ r 2
0dÄ2. (27)

We introduce the following transformations

X = 1

κ
+ x, t = κt ′, (28)

Eqs. (27) becomes

ds2 = −(1+ κx)2dt′2+ dx2+ r 2
0dÄ2, (29)

whereκ is the surface gravity at the static horizon. In the infinitesimal vicinity of a
point at the horizon, the metric of plane can substitute for the geometry of spherical
surface. Then, Eqs. (1), point by point, describes the geometry of an infinitesimal
vicinity to the horizon. The entropy of the black hole can be obtained by Rindler
approximation (Frolov and Fursaev, 1998; Li and Zhao, 2000a).

Most authors focus their attention on the stationary black holes. However,
considering the Hawking radiation of holes, the more real space–time is nonsta-
tionary. It is meaningful and interesting to compute the entropy of nonstationary
black hole. By using the condition of linear nonequilibrium, we have investigated
the entropy of Vaidya black hole (Li and Zhao, 2000b). We believe that the result
obtained in this paper can also be applied to the nonstationary case. Although the
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surface gravity is not well-defined in a nonstationary space–time, we still know
by intuition that an observer near the horizon feels a variable acceleration. This
is very similar to the case of nonuniformly accelerating observer in Minkowski
space–time.
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